金泽学校秋季班
当前位置 > 主页 > 资讯中心 > 名师指导 > 高中物理知识点——动量定理的五种应用及例题详解

高中物理知识点——动量定理的五种应用及例题详解

一、 用动量定理解释生活中的现象
 
【例1】竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
 
 
【解析】纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向。不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变。在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示.根据动量定理有:μmgt=mv。
 
 
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
 
 
如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变.粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
 
 
母亲节
二、 用动量定理解曲线运动问题
 
 
【例2】以速度v0 水平抛出一个质量为1 kg的物体,若在抛出后5 s未落地且未与其它物体相碰,求它在5 s内的动量的变化.(g=10 m/s2)。
 
 
【解析】此题若求出末动量,再求它与初动量的矢量差,则极为繁琐.由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量.则Δp=Ft=mgt=1×10×5=50 kg·m / s。
 
 
注: ① 运用Δp=mv-mv0求Δp时,初、末速度必须在同一直线上,若不在同一直线,需考虑运用矢量法则或动量定理Δp=Ft求解Δp.②用I=F·t求冲量,F必须是恒力,若F是变力,需用动量定理I=Δp求解I。
 
 
母亲节
三、 用动量定理解决打击、碰撞问题
 
打击、碰撞过程中的相互作用力,一般不是恒力,用动量定理可只讨论初、末状态的动量和作用力的冲量,不必讨论每一瞬时力的大小和加速度大小问题。
 
 
【例3】蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg的运动员,从离水平网面3.2 m高处自由落下,触网后沿竖直方向蹦回到离水平网面1.8 m高处.已知运动员与网接触的时间为1.4 s.试求网对运动员的平均冲击力.(取g=10 m/s2)
 
 
【解析】由V^2=2gh
得着网时速度的大小为
|V0|=根号(2gh0)=根号(2*10*3.2)=8m/s
以向上为正,V0=-8m/s
离网时速度V=根号(2gh)=根号(2*10*5)=10m/s
F-mg=ma=m(V-Vo)/t=60*[(10-(-8)]/1.2=900
此力的大小F=mg+ma=60*10+900=1500N
 
 
母亲节
四、 用动量定理解决连续流体的作用问题
 
在日常生活和生产中,常涉及流体的连续相互作用问题,用常规的分析方法很难奏效.若构建柱体微元模型应用动量定理分析求解,则曲径通幽,“柳暗花明又一村”。
 
 
【例4】有一宇宙飞船以v=10 km/s在太空中飞行,突然进入一密度为ρ=1×10-7 kg/m3的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上.欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大为多少?(已知飞船的正横截面积S=2 m2)
 
 
【解析】选在时间Δt内与飞船碰撞的微陨石尘为研究对象,其质量应等于底面积为S,高为vΔt的直柱体内微陨石尘的质量,即m=ρSvΔt,初动量为0,末动量为mv.设飞船对微陨石的作用力为F,由动量定理得,则 。根据牛顿第三定律可知,微陨石对飞船的撞击力大小也等于20 N.因此,飞船要保持原速度匀速飞行,助推器的推力应增大20 N。
 
 
母亲节
五、 动量定理的应用可扩展到物体系
 
尽管系统内各物体的运动情况不同,但各物体所受冲量之和仍等于各物体总动量的变化量。
 
 
【例5】质量为M的金属块和质量为m的木块通过细线连在一起,从静止开始以加速度a在水中下沉,经时间t1,细线断裂,金属块和木块分离,再经过时间t2木块停止下沉,此时金属块的速度多大?(已知此时金属块还没有碰到底面.)
 
 
【解析】无论细线是否断了,以二者为系统研究,合外力不变(也就是二者各自受的重力、浮力均不变。而细线的拉力属于内力)
 
由动量定理可得合外力为(M+m)a 它是不变的
 
因此,合外力的冲量为(M+m)a(t+t')
 
它等于系统内各个物体动量的变化,即MV (因为初末状态木块的动量不变)
 
所以,(M+m)a(t+t')=MV,V=(M+m)a(t+t')/M。
金泽学校暑期公开课